Crea mexicano software para diagnosticar cáncer cervicouterino

Crea mexicano software para diagnosticar cáncer cervicouterino

En el Centro de Investigación en Inteligencia Artificial (CIIA) de la Universidad Veracruzana se desarrollan líneas de investigación orientadas a facilitar diagnósticos médicos, como es el caso del cáncer cervicouterino. Tras este enfoque, el doctor Héctor Gabriel Acosta Mesa diseñó un sistema que auxilia en el diagnóstico de lesiones cancerígenas, mediante el uso de la colposcopía.

El sistema se vale de la información visual aportada por una serie de imágenes, de las cuales se extraen patrones que permiten el aprendizaje automático de la máquina. El aprendizaje automático —como lo denomina el experto— es información ingresada al sistema y que es aportada por los especialistas en colposcopía que, a través de un modelo matemático, aprende las relaciones entre las distintas características de la imagen y de esta forma facilita el diagnóstico basado en factores cuantitativos.

El proyecto fue financiado por el Fondo Sectorial de Investigación en Salud SSA/IMSS/ISSSTE-Conacyt y presentado como “Análisis del comportamiento espectral del epitelio escamoso normal del cérvix y el epitelio acetoblanco por infección de virus del papiloma, mediante el procesamiento digital de imágenes colposcópicas usando un modelo dinámico lineal”, y en la primera fase se trabajó con doscientas pacientes para entrenar el sistema.

Con información de Conacyt

Acerca de 

El equipo de Alejandra Barrales

Comentar